## 16-bit Microcontroller

## CMOS

## F²MC-16LX MB90820B Series

## MB90822B/823B/F822B/F823B/F828B/V820B

## ■ DESCRIPTION

The MB90820B series is a line of general-purpose, Fujitsu 16-bit microcontrollers designed for process control applications which require high-speed real-time processing, such as consumer products.
While inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}$ family, the instruction set for the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core of the MB90820B series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90820B series has an on-chip 32-bit accumulator which enables processing of long-word data.
The peripheral resources integrated in the MB90820B series include : an 8/10-bit A/D converter, 8 -bit D/A converters, UARTs (SCI) 0 , 1 , multi-functional timer ( 16 -bit free-run timer, input capture units (ICUs) 0 to 3 , output compare units (OCUs) 0 to 5 , 16 -bit PPG timer 0 , waveform generator), 16 -bit PPG timer 1, 2, PWC $0,1,16$-bit reload timer 0,1 and DTP/external interrupt.
Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time of instruction : $42 \mathrm{~ns} / 4 \mathrm{MHz}$ oscillation (uses PLL clock multiplication) maximum multiplier $=6$
- Maximum memory space 16 M bytes, Linear/bank access
- Instruction set optimized for controller applications

Supported data types : bit, byte, word, and long-word types
Standard addressing modes : 23 types
32-bit accumulator enhancing high-precision operations
Signed multiplication/division instructions and enhanced RETI instructions
(Continued)

For the information for microcontroller supports, see the following web site.
http://edevice.fujitsu.com/micom/en-support/

## MB90820B Series

## (Continued)

- Enhanced high level language (C) and multi-tasking support instructions Use of a system stack pointer
Symmetrical instruction set and barrel shift instructions
- Program patch function (for two address pointers)
- Increased execution speed : 4-byte instruction queue
- Powerful interrupt function

Up to eight priority levels programmable External interrupt inputs : 8 channels

- Automatic data transmission function independent of CPU operation Up to 16 channels for the extended intelligent I/O service DTP request inputs : 8 channels
- Internal ROM

Flash memory : $64 \mathrm{~K} / 128 \mathrm{~K}$ bytes with flash security
MASK ROM : $64 \mathrm{~K} / 128 \mathrm{~K}$ bytes

- Internal RAM

Evaluation product : 16 K bytes
Flash memory : $4 \mathrm{~K} / 8 \mathrm{~K}$ bytes
MASK ROM : 4 K bytes

- General-purpose ports Up to 66 channels (ports where pull-up resistor can be configured : 32 channels)
- A/D Converter (RC) : 16 channels 8/10-bit resolution selectable Conversion time : Min $3 \mu \mathrm{~s}$ ( 24 MHz operation, including sampling time)
- 8-bit D/A Converter : 2 channels
- UART : 2 channels
- 16-bit PPG timer : 3 channels

Mode switching function provided (PWM mode or one-shot mode)
ch. 0 can be worked with multi-functional timer or independently

- 16 -bit reload timer : 2 channels
- 16-bit PWC timer : 2 channels
- Clock supervisor
- Multi-functional timer Input capture : 4 channels Output compare with selectable buffer : 6 channels Free-run timer with up or up-down mode selection and selectable buffer: 1 channel 16-bit PPG timer : 1 channel
Waveform generator : (16-bit timer : 3 channels, 3-phase waveform or dead time)
- Time-base timer/watchdog timer : 18-bit
- Low-power consumption mode :


## Sleep mode

Stop mode
CPU intermittent operation mode

- Package :

LQFP-80 (FPT-80P-M21 : 0.50 mm pitch)
LQFP-80 (FPT-80P-M22 : 0.65 mm pitch)
QFP-80 (FPT-80P-M06 : 0.80 mm pitch)

- CMOS technology


## PRODUCT LINEUP

| Part number Item | MB90V820B | MB90F822B | MB90F823B | MB90F828B | MB90822B | MB90823B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Classification | Evaluation product | Flash memory product with flash security |  |  | MASK ROM product |  |
| ROM size | - | 64 K bytes | 128 K bytes | 128 K bytes | 64 K bytes | 128 K bytes |
| RAM size | 16 K bytes | 4 K bytes |  | 8 K bytes | 4 K bytes |  |
| CPU function | Number of instruction : 351 <br> Minimum execution time : $42 \mathrm{~ns} / 4 \mathrm{MHz}($ PLL $\times 6$ ) <br> Addressing mode : 23 <br> Data bit length : 1, 8,16 bits <br> Maximum memory space: 16 M bytes |  |  |  |  |  |
| I/O port | I/O port (CMOS) : 66 |  |  |  |  |  |
| PWC | Pulse width counter timer : 2 channels <br> Timer function (select the counter timer from three internal clocks) <br> Various pulse width measuring function ("H" pulse width, "L" pulse width, rising edge to falling edge period, falling edge to rising edge period, rising edge to rising edge period and falling edge to falling edge period) |  |  |  |  |  |
| UART | UART : 2 channels <br> With full-duplex double buffer (8-bit length) <br> Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selected and used. <br> Transmission can be one-to-one (bidirectional communication) or one-to-n (master-slave communication). |  |  |  |  |  |
| 16-bit reload timer | Reload timer : 2 channels <br> Reload mode, single-shot mode or event count mode selectable |  |  |  |  |  |
| 16-bit PPG timer | PPG timer : 3 channels <br> PWM mode or single-shot mode selectable <br> Ch. 0 can be worked with multi-functional timer or independently. |  |  |  |  |  |
| Multi-functional timer (for AC/DC motor control) | 16-bit free-run timer with up or up-down mode selection and buffer : 1 channel 16-bit output compare : 6 channels <br> 16-bit input capture : 4 channels <br> 16-bit PPG timer : 1 channel <br> Waveform generator (16-bit timer : 3 channels, 3-phase waveform or dead time) |  |  |  |  |  |
| 8/10-bit <br> A/D converter | 8/10-bit resolution (16 channels) <br> Conversion time : Min $3 \mu \mathrm{~s}$ ( 24 MHz internal clock, including sampling time) |  |  |  |  |  |
| 8-bit <br> D/A converter | 8-bit resolution (2 channels) |  |  |  |  |  |
| DTP/External interrupt | 8 independent channels Interrupt trigger : Rising edge, falling edge, "L" level or " H " level |  |  |  |  |  |
| Clock supervisor | No |  |  | Yes | No |  |
| Low-power consumption | Stop mode / Sleep mode / CPU intermittent operation mode |  |  |  |  |  |

(Continued)

## MB90820B Series

(Continued)

| $\qquad$ | MB90V820B | MB90F822B | MB90F823B | MB90F828B | MB90822B | MB90823B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package | PGA-299 | LQFP-80 (FPT-80P-M21:0.50 mm pitch)LQFP-80 (FPT-80P-M22 : 0.65 mm pitch)QFP-80 (FPT-80P-M06 : 0.80 mm pitch) |  |  |  |  |
| Power supply voltage for operation | $\begin{gathered} 4.5 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \text { *1 } \end{gathered}$ | 3.5 V to 5.5 V : Normal operation when A/D converter and D/A converter are not used <br> 4.0 V to 5.5 V : Normal operation when D/A converter is not used <br> 4.5 V to 5.5 V : Normal operation when $\mathrm{A} / \mathrm{D}$ converter and D/A converter are used |  |  |  |  |
| Process | CMOS |  |  |  |  |  |
| Emulator power supply*2 | Included | - |  |  |  |  |

*1: MB90V820B is operating guaranteed temperature $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$.
*2 : Configured by a jumper switch (TOOL VCC) when emulator (MB2147-01) is used.
Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.

PACKAGE AND CORRESPONDING PRODUCTS

| Package | MB90V820B | MB90F822B | MB90F823B | MB90F828B | MB90822B | MB90823B |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PGA-299 | $\bigcirc$ | X | X | X | X | X |
| FPT-80P-M21 | X | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| FPT-80P-M22 | X | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| FPT-80P-M06 | X | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

: Available
X : Not available
Note: For more information about each package, refer to "■ PACKAGE DIMENSIONS".

## MB90820B Series

## DIFFERENCES AMONG PRODUCTS

## Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V820B does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V820B, images from FF8000н to FFFFFFн аre mapped to bank 00, and FE0000н to FF7FFFн are mapped to bank FE and bank FF only. (This setting can be changed by configuring the development tool.)
- In the MB90822B/F822B/F828B, images from FF8000н to FFFFFFн are mapped to bank 00, and FF0000н to FF7FFF н are mapped to bank FF only. In the MB90823B/F823B/F828B, images from FF8000н to FFFFFFH are mapped to bank 00, and FE0000н to FF7FFF are mapped to bank FE and bank FF only.


## Clock Supervisor Function

The clock supervisor is built-in in MB90F828B only. Note that the evaluation products and products actually used are different when evaluating evaluation products. Please contact the sales representatives for more information on evaluation of this function.

## Modify ROM data

The registers include this function between 001FF0н and 001FF5 $н$ which overlap the RAM area of MB90F828B. Do not access to the RAM when using this function in MB90F282B.

## MB90820B Series

## PIN ASSIGNMENT


*: High current pin.
(Continued)

## MB90820B Series

(Continued)
(TOP VIEW)

(FPT-80P-M22)
(FPT-80P-M21)
*: High current pin.

## MB90820B Series

## PIN DESCRIPTION

| Pin no. |  | Pin name | I/O circuit *3 | $\begin{array}{\|c} \hline \text { Pin status } \\ \text { during } \\ \text { reset } \end{array}$ | Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP *1 | QFP *2 |  |  |  |  |
| 21, 22 | 23, 24 | X0,X1 | A | Oscillating | Oscillation pins. |
| 17 | 19 | RST | B | Reset input | External reset input pin. |
| 59 to 54 | 61 to 56 | P00 to P05 | C | Port input | General-purpose I/O ports. |
| 53 | 55 | P06 | C |  | General-purpose I/O port. |
|  |  | PWIO |  |  | PWC ch. 0 signal input pin. |
| 52 | 54 | P07 | C |  | General-purpose I/O port. |
|  |  | PWO0 |  |  | PWC ch. 0 signal output pin. |
| 51 | 53 | P10 | D |  | General-purpose I/O port. |
|  |  | INT0 |  |  | External interrupt request input ch. 0 pin. |
|  |  | DTTI |  |  | RTO0 to RTO5 pins for fixed-level input. This function is enabled when the waveform generator specifies its input bits. |
| 50 to 45 | 52 to 47 | P11 to P16 | D |  | General-purpose I/O ports. |
|  |  | INT1 to INT6 |  |  | External interrupt request input ch. 1 to ch. 6 pins. |
| 44 | 46 | P17 | D |  | General-purpose I/O port. |
| 43 | 45 | P20 | D |  | General-purpose I/O port. |
|  |  | TIN1 |  |  | External clock input pin for reload timer ch.1. |
| 42 | 44 | P21 | D |  | General-purpose I/O port. |
|  |  | TO1 |  |  | Event output pin for reload timer ch.1. |
| $\begin{gathered} 41, \\ 39 \text { to } 35 \end{gathered}$ | $\begin{gathered} 43, \\ 41 \text { to } 37 \end{gathered}$ | P22 to P27 | D |  | General-purpose I/O ports. |
| 34 to 28 | 36 to 30 | P30 to P36 | E |  | General-purpose I/O ports. |
| 27 | 29 | P37 | E |  | General-purpose I/O port. |
|  |  | PPG0 |  |  | Output pin for PPG timer ch.0. |
| 26 | 28 | P40 | F |  | General-purpose I/O port. |
|  |  | PPG1 |  |  | Output pin for PPG timer ch.1. |
| 19 | 21 | P41 | F |  | General-purpose I/O port. |
|  |  | TIN0 |  |  | External clock input pin for reload timer ch.0. |
| 18 | 20 | P42 | F |  | General-purpose I/O port. |
|  |  | TO0 |  |  | Event output pin for reload timer ch.0. |

(Continued)

## MB90820B Series

| Pin no. |  | Pin name | $\begin{gathered} 1 / 0 \\ \text { circuit }{ }^{* 3} \end{gathered}$ | Pin status during reset | Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP *1 | QFP *2 |  |  |  |  |
| 16 | 18 | P43 | F | Port Input | General-purpose I/O port. |
|  |  | SCK0 |  |  | Serial clock I/O pin for UART ch.0. |
| 15 | 17 | P44 | F |  | General-purpose I/O port. |
|  |  | SOT0 |  |  | Serial data output pin for UART ch.0. |
| 14 | 16 | P45 | G |  | General-purpose I/O port. |
|  |  | SINO |  |  | Serial data input pin for UART ch.0. |
| 13 | 15 | P46 | F |  | General-purpose I/O port. |
|  |  | PWI1 |  |  | PWC ch. 1 signal input pin. |
| 12 | 14 | P47 | F |  | General-purpose I/O port. |
|  |  | PWO1 |  |  | PWC ch. 1 signal output pin. |
| 11 | 13 | P50 | F |  | General-purpose I/O port. |
|  |  | PPG2 |  |  | Output pin for PPG timer ch.2. |
| 10 | 12 | P51 | F |  | General-purpose I/O port. |
|  |  | INT7 |  |  | External interrupt request input ch. 7 pin. |
| 9 to 2 | 11 to 4 | P60 to P67 | H | Analog input | General-purpose I/O ports. |
|  |  | AN0 to AN7 |  |  | A/D converter analog input pins. |
| 78, 77 | 80, 79 | P70, P71 | 1 |  | General-purpose I/O ports. |
|  |  | DA0, DA1 |  |  | D/A converter analog output pins. |
|  |  | AN8, AN9 |  |  | A/D converter analog input pins. |
| 76 | 78 | P72 | J |  | General-purpose I/O port. |
|  |  | SIN1 |  |  | Serial data input pin for UART ch.1. |
|  |  | AN10 |  |  | A/D converter analog input pin. |
| 75 | 77 | P73 | K |  | General-purpose I/O port. |
|  |  | SOT1 |  |  | Serial data output pin for UART ch.1. |
|  |  | AN11 |  |  | A/D converter analog input pin. |
| 74 | 76 | P74 | K |  | General-purpose I/O port. |
|  |  | SCK1 |  |  | Serial clock I/O pin for UART ch.1. |
|  |  | AN12 |  |  | A/D converter analog input pin. |
| 73 | 75 | P75 | K |  | General-purpose I/O port. |
|  |  | FRCK |  |  | External clock input pin for free-run timer. |
|  |  | AN13 |  |  | A/D converter analog input pin. |

(Continued)

## MB90820B Series

(Continued)

| Pin no. |  | Pin name | I/O circuit *3 | $\begin{array}{\|c} \text { Pin status } \\ \text { during } \\ \text { reset } \end{array}$ | Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP *1 | QFP *2 |  |  |  |  |
| 72, 71 | 74, 73 | P76, P77 | K | Analog input | General-purpose I/O ports. |
|  |  | IN0, IN1 |  |  | Trigger input pins for input capture ch.0, ch.1. |
|  |  | AN14, AN15 |  |  | A/D converter analog input pins. |
| 70,69 | 72, 71 | P80, P81 | F | Port input | General-purpose I/O ports. |
|  |  | IN2, IN3 |  |  | Trigger input pins for input capture ch.2, ch.3. |
| 68 to 63 | 70 to 65 | P82 to P87 | L |  | General-purpose I/O ports. |
|  |  | $\begin{array}{\|l} \hline \text { RTO0 (U) to } \\ \text { RTO5 (Z) } \end{array}$ |  |  | Waveform generator output pins. (U) to (Z) represent the coils for controlling a 3 -phase motor. |
| 25 | 27 | MD2 | M | Mode input | Input pin for operation mode specification. |
| 24, 23 | 26, 25 | MD1, MD0 | N |  | Input pins for operation mode specification. |
| 80 | 2 | AV ${ }_{\text {cc }}$ | - | - | Analog power supply pin. |
| 79 | 1 | AVR | - |  | Vref + pin for the A/D converter. Vref - is fixed to AVss internally. |
| 1 | 3 | AVss | - |  | Analog power supply (Ground) pin. |
| 20,61 | 22,63 | Vss | - |  | Power (Ground) pins. |
| 40, 60 | 42, 62 | Vcc | - |  | Power pins. |
| 62 | 64 | C | - |  | Connect pin for smoothing capacitor to stabilize internal power supply. |

*1: FPT-80P-M21,
FPT-80P-M22
*2 : FPT-80P-M06
*3 : Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

## MB90820B Series

## I/O CIRCUIT TYPE

| Classification | Type | Remarks |
| :---: | :---: | :---: |
| A |  | Oscillation feedback resistor : approx. $1 \mathrm{M} \Omega$ |
| B |  | - Hysteresis input <br> - Pull-up resistor : approx. $50 \mathrm{k} \Omega$ |
| C |  | - CMOS output <br> - Hysteresis input <br> - Selectable pull-up resistor : approx. $50 \mathrm{k} \Omega$ <br> - lol = 12 mA |
| D |  | - CMOS output <br> - Hysteresis input <br> - Selectable pull-up resistor : approx. $50 \mathrm{k} \Omega$ <br> - $\mathrm{loL}=4 \mathrm{~mA}$ |
| E |  | - CMOS output <br> - CMOS input <br> - With pull-up control <br> - loL $=4 \mathrm{~mA}$ |

(Continued)

## MB90820B Series

| Classification | Type | Remarks |
| :---: | :---: | :---: |
| F |  | - CMOS output <br> - Hysteresis input <br> - lo = 4 mA |
| G |  | - CMOS output <br> - Hysteresis input <br> - CMOS input (selectable for UART ch. 0 data input pin) <br> - lol $=4 \mathrm{~mA}$ |
| H |  | - CMOS output <br> - CMOS input <br> - Analog input <br> - lot $=4 \mathrm{~mA}$ |
| I |  | - CMOS output <br> - Hysteresis input <br> - Analog output <br> - Analog input <br> - $\mathrm{loL}=4 \mathrm{~mA}$ |

(Continued)

FUIITSU

## MB90820B Series

(Continued)

| Classification | Type | Remarks |
| :---: | :---: | :---: |
| $J$ |  | - CMOS output <br> - Hysteresis input <br> - CMOS input (selectable for UART ch. 1 data input pin) $\text { - } \mathrm{loL}=4 \mathrm{~mA}$ |
| K |  | - CMOS output <br> - Hysteresis input <br> - Analog input <br> - $\mathrm{loL}=4 \mathrm{~mA}$ |
| L |  | - CMOS output <br> - Hysteresis input <br> - lol = 12 mA |
| M |  | MASK ROM / evaluation product <br> - Hysteresis input <br> - Pull-down resistor : approx. $50 \mathrm{k} \Omega$ <br> Flash memory product <br> - CMOS input <br> - No pull-down resistor |
| N | $\square: \begin{array}{ll}\text { a } \\ \square\end{array}$ | MASK ROM / evaluation product <br> - Hysteresis input <br> Flash memory product <br> - CMOS input |

## MB90820B Series

## HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Stabilization of supply voltage
- Treatment of unused pins
- Using external clock
- Power supply pins (Vcc /Vss )
- Pull-up/pull-down resistors
- Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- Notes on turning the power on
- Notes on During Operation of PLL Clock Mode


## 1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than $\mathrm{V}_{\mathrm{cc}}$ or lower than $\mathrm{V}_{\mathrm{ss}}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss pins.
- The AV cc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
In using the devices, take sufficient care to avoid exceeding maximum ratings.
For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.

## 2. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operation range. Therefore, the Vcc supply voltage should be stabilized.
For reference, the supply voltage should be controlled so that $\mathrm{V}_{\mathrm{cc}}$ ripple variations (peak-to-peak values) at commercial frequencies ( $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ ) fall below $10 \%$ of the standard V cc supply voltage and the coefficient of fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.

## 3. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \mathrm{k} \Omega$.
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

## 4. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.


## MB90820B Series

## 5. Power supply pins ( $\mathrm{Vcc} / \mathrm{Vss}$ )

- If there are multiple $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up.
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins to the power supply and ground externally.
- Connect $\mathrm{V}_{\mathrm{cc}}$ and V ss pins to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about $0.1 \mu \mathrm{~F}$ as a bypass capacitor between $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins in the vicinity of $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins of the device.



## 6. Pull-up/pull-down resistors

The MB90820B series does not support internal pull-up/pull-down resistors option (Port 0 to Port 3 : built-in pullup resistors) . Use external components where needed.
7. Crystal oscillator circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic oscillator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits while you design a printed circuit board.
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with a ground area for stabilizing the operation.
8. Turning-on sequence of power supply to A/D converter and D/A converter, and analog inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVR) and analog inputs (AN0 to AN15) after turning-on the digital power supply (Vcc).
Turn-off the digital power after turning off the A/D converter power supply, D/A converter power supply, and analog inputs. In this case, make sure that the voltage not exceed AVR or $A V c c$ (turning on/off the analog and digital power supplies simultaneously is acceptable).
9. Pin connections when A/D converter and D/A converter are unused

When the $A / D$ converter and $D / A$ converter are not used, connect $A V c c=V c c, A V s s=A V R H=A V R L=V s s$.

## MB90820B Series

## 10. Notes on turning the power on

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during power on at $50 \mu \mathrm{~s}$ or more ( 0.2 V to 2.7 V ).

## 11. Notes on During Operation of PLL Clock Mode

If the PLL clock mode is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit within the PLL even if the external oscillator is disconnected or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

## 12. Internal CR Oscillation Circuit

| Parameter | Symbol | Rating |  |  | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Oscillation frequency | $\mathrm{f}_{\mathrm{Rc}}$ | 50 | 100 | 200 | kHz |
| Oscillation stabilization waiting time | tstab | - | - | 100 | $\mu \mathrm{~s}$ |

## MB90820B Series

## SECTOR CONFIGURATION OF FLASH MEMORY

The flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.

When 512 K bits flash memory is accessed from the CPU, SA0 to SA3 are allocated in the FF bank.

| Flash memory | CPU address | *Writer address |
| :---: | :---: | :---: |
| SA3 (16K bytes) | FFFFFFF $_{\text {H }}$ | $7 \mathrm{FFFFF}_{\mathrm{H}}$ |
|  | FFCOOOH | 7 COOOH |
| SA2 (8K bytes) | $\mathrm{FFBFFF}_{\mathrm{H}}$ | 7BFFF |
|  | FFAOOOH | 7 A 000 H |
| SA1 (8K bytes) | $\mathrm{FF9FFF}_{\text {H }}$ | 79 FFF H |
|  | FF8000 ${ }_{\text {H }}$ | $78000^{\text {H}}$ |
| SA0 (32K bytes) | $\mathrm{FF} 7 \mathrm{FFF}_{\mathrm{H}}$ | 77FFF ${ }_{\text {H }}$ |
|  | FFOOOOH | 70000 H |

When 1024K bits flash memory is accessed from the CPU, SA0 to SA4 are allocated in the FE and FF bank.

| Flash memory | CPU address | *Writer address |
| :---: | :---: | :---: |
| SA4 (16K bytes) | $\mathrm{FFFFFFF}_{\mathrm{H}}$ | $7 \mathrm{FFFFF}_{\mathrm{H}}$ |
|  | $\mathrm{FFCO}^{\text {O }} \mathrm{H}_{\mathrm{H}}$ | 7 COOOH |
| SA3 (8K bytes) | $\mathrm{FFBFFF}_{\mathrm{H}}$ | $7 \mathrm{BFFF}_{\mathrm{H}}$ |
|  | FFA000 ${ }_{\text {H }}$ | 7 AOOOH |
| SA2 (8K bytes) | $\mathrm{FF9FFF}_{\mathrm{H}}$ | 79FFFH |
|  | FF8000 ${ }_{\text {H }}$ | $78000^{\text {H}}$ |
| SA1 (32K bytes) | FF7FFF ${ }_{\text {H }}$ | 77FFFH |
|  | FFO000 ${ }_{\text {H }}$ | $70000_{H}$ |
| SA0 (64K bytes) | $\mathrm{FEFFFFF}_{\mathrm{H}}$ | $6 \mathrm{FFFF}_{\mathrm{H}}$ |
|  | FEOOOOH | $6000{ }_{H}$ |

[^0]
## MB90820B Series

## BLOCK DIAGRAM



Note : P00 to P07, P10 to P17, P20 to P27 and P30 to P37: With build-in resistors that can be used as input pull-up resistors.
*1 : MB90F828B
*2 : High current drive pin.

## MB90820B Series

## MEMORY MAP


$\square$ : Internal access memory
$\triangle$ : Access not allowed
*: In Single chip mode, the mirror function is supported.

| Parts no. | Address\#1 | Address\#2 | Address\#3 |
| :---: | :---: | :---: | :---: |
| MB90822B | FFOOOOH | 008000H | 0010FFH |
| MB90823B | FE0000н | 008000н | 0010FFH |
| MB90F822B | FFOOOOH | 008000н | 0010FF ${ }_{\text {\% }}$ |
| MB90F823B | FE0000н | 008000н | 0010FF ${ }_{\text {¢ }}$ |
| MB90F828B | FE0000н | 008000н | 0020FFH |
| MB90V820B | (FE0000\%) | 008000н | 0040FFH |

Note: The ROM data of bank FF is reflected to the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16 -bit is assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00 CO 00 H , the contents of the ROM at FFCOOO н are accessed actually. Since the ROM area of the FF bank exceeds 32 K bytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF8000н to FFFFFFн looks, therefore, as if it were the image for 008000 н to 00 FFFFн. Thus, it is recommended that the ROM data table be stored in the area of FF8000н to FFFFFFFн.

## MB90820B Series

## $F^{2}$ MC-16LX CPU PROGRAMMING MODEL

- Dedicated registers



## MB90820B Series

- General-purpose registers

- Processor status (PS)

| PS | ILM |  |  | RP |  |  |  |  | CCR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ILM2 | ILM1 | ILMO | B4 | B3 | B2 | B1 | B0 | - | 1 | S | T | N | Z | V | C |
| Initial value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | X | X | X | X | X |
| $\bar{\chi}$ | : Unused <br> : Undefined |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## MB90820B Series

■ I/O MAP

| Address | Abbreviation | Register | Byte access | Word access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000000н | PDR0 | Port 0 data register | R/W | R/W | Port 0 | ХХХХХХХХХв |
| 000001н | PDR1 | Port 1 data register | R/W | R/W | Port 1 | XXXXXXXX |
| 000002н | PDR2 | Port 2 data register | R/W | R/W | Port 2 | XXXXXXXXв |
| 000003н | PDR3 | Port 3 data register | R/W | R/W | Port 3 | XXXXXXXX |
| 000004н | PDR4 | Port 4 data register | R/W | R/W | Port 4 | XXXXXXXX |
| 000005н | PDR5 | Port 5 data register | R/W | R/W | Port 5 | XXXXXXXXв |
| 000006н | PDR6 | Port 6 data register | R/W | R/W | Port 6 |  |
| 000007н | PDR7 | Port 7 data register | R/W | R/W | Port 7 | ХХХХХХХХХв |
| 000008н | PDR8 | Port 8 data register | R/W | R/W | Port 8 |  |
| $\begin{aligned} & 000009_{\mathrm{H}} \\ & \text { to } \\ & 00000 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Prohibited area |  |  |  |  |  |
| 000010н | DDR0 | Port 0 data direction register | R/W | R/W | Port 0 | 00000000в |
| 000011н | DDR1 | Port 1 data direction register | R/W | R/W | Port 1 | 00000000в |
| 000012н | DDR2 | Port 2 data direction register | R/W | R/W | Port 2 | 00000000в |
| 000013н | DDR3 | Port 3 data direction register | R/W | R/W | Port 3 | 00000000в |
| 000014н | DDR4 | Port 4 data direction register | R/W | R/W | Port 4 | 00000000в |
| 000015н | DDR5 | Port 5 data direction register | R/W | R/W | Port 5 | XXXXXX00в |
| 000016н | DDR6 | Port 6 data direction register | R/W | R/W | Port 6 | 00000000в |
| 000017н | DDR7 | Port 7 data direction register | R/W | R/W | Port 7 | 00000000в |
| 000018н | DDR8 | Port 8 data direction register | R/W | R/W | Port 8 | 00000000в |
| $\begin{aligned} & \text { 000019н } \\ & \text { to } \\ & 00001 \mathrm{FH}_{\mathrm{H}} \end{aligned}$ | Prohibited area |  |  |  |  |  |
| 000020н | SMR0 | Serial mode register ch. 0 | R/W | R/W | UART ch. 0 | 00000000в |
| 000021н | SCR0 | Serial control register ch. 0 | W, R/W | W, R/W |  | 00000100в |
| 000022н | $\begin{aligned} & \text { SIDR0 / } \\ & \text { SODR0 } \end{aligned}$ | Serial input data register ch. 0 / Serial output data register ch. 0 | R/W | R/W |  | ХХХХХХХХХв |
| 000023н | SSR0 | Serial status register ch. 0 | R, R/W | R, R/W |  | 00001000в |
| 000024н | SMR1 | Serial mode register ch. 1 | R/W | R/W | UART ch. 1 | 00000000в |
| 000025 | SCR1 | Serial control register ch. 1 | W, R/W | W, R/W |  | 00000100в |
| 000026 ${ }^{\text {H }}$ | SIDR1/ <br> SODR1 | Serial input data register ch. 1 / Serial output data register ch. 1 | R/W | R/W |  | ХХХХХХХХХв |
| 000027H | SSR1 | Serial status register ch. 1 | R, R/W | R, R/W |  | 00001000в |

(Continued)

## MB90820B Series

| Address | Abbreviation | Register | Byte access | Word access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000028н | PWCSL1 | PWC control status register ch. 1 | R/W | R/W | PWC timer ch. 1 | 00000000в |
| 000029н | PWCSH1 |  | R, R/W | R, R/W |  | 00000000в |
| 00002Ан | PWC1 | PWC data buffer register ch. 1 | - | R/W |  | ХХХХХХХХХв |
| 00002Вн |  |  |  |  |  | ХХХХХХХХХв |
| 00002Cн | DIV1 | Divide ratio control register ch. 1 | R/W | R/W |  | XXXXXX00в |
| $\begin{aligned} & \text { 00002Dн, } \\ & \text { 00002Ен } \end{aligned}$ | Prohibited area |  |  |  |  |  |
| 00002FH | PCKCR | PLL clock control register | W | W | PLL | XXXX0000в |
| 000030н | ENIR | DTP / Interrupt enable register | R/W | R/W | DTP/ external interrupt ch. 0 to ch. 7 | 00000000в |
| 000031н | EIRR | DTP / Interrupt cause register | R/W | R/W |  | XXXXXXXX |
| 000032н | ELVRL | Request level setting register (lower byte) | R/W | R/W |  | 00000000в |
| 000033 ${ }^{\text {H }}$ | ELVRH | Request level setting register (higher byte) | R/W | R/W |  | 00000000в |
| 000034H | Prohibited area |  |  |  |  |  |
| 000035 | CDCR0 | Clock division ratio control register ch. 0 | R/W | R/W | Communication prescaler ch. 0 | 00XXX000в |
| 000036н | Prohibited area |  |  |  |  |  |
| 000037 ${ }^{\text {H }}$ | CDCR1 | Clock division ratio control register ch. 1 | R/W | R/W | Communication prescaler ch. 1 | 00XXX000в |
| 000038н | PDCR0 | PPG down counter register ch. 0 | - | R | 16-bit PPG timer ch. 0 | 11111111 в |
| 000039н |  |  |  |  |  | 11111111в |
| 00003Ан | PCSR0 | PPG cycle setting register ch. 0 | - | W |  |  |
| 00003Вн |  |  |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 00003Сн | PDUT0 | PPG duty setting register ch. 0 | - | W |  | XXXXXXXX |
| 00003D |  |  |  |  |  | XXXXXXXX |
| 00003Ен | PCNTLO | PPG control status register ch. 0 | R/W | R/W |  | XX000000в |
| 00003FH | PCNTH0 |  | R/W | R/W |  | 00000000в |
| 000040н | PDCR1 | PPG down counter register ch. 1 | - | R | 16-bit PPG timer ch. 1 | 11111111 в |
| 000041н |  |  |  |  |  | 11111111в |
| 000042н | PCSR1 | PPG cycle setting register ch. 1 | - | W |  |  |
| 000043н |  |  |  |  |  |  |
| 000044н | PDUT1 | PPG duty setting register ch. 1 | - | W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 000045н |  |  |  |  |  | XXXXXXXX ${ }_{\text {в }}$ |
| 000046н | PCNTL1 | PPG control status register ch. 1 | R/W | R/W |  | XX000000в |
| 000047 | PCNTH1 |  | R/W | R/W |  | 00000000в |

(Continued)

## MB90820B Series

| Address | Abbreviation | Register | $\begin{gathered} \text { Byte } \\ \text { access } \end{gathered}$ | Word access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000048н | PDCR2 | PPG down counter register ch. 2 | - | R | 16-bit PPG timer ch. 2 | 11111111в |
| 000049н |  |  |  |  |  | 11111111в |
| 00004Ан | PCSR2 | PPG cycle setting register ch. 2 | - | W |  | ХХХХХХХХХв |
| 00004Вн |  |  |  |  |  | ХХХХХХХХХв |
| 00004Сн | PDUT2 | PPG duty setting register ch. 2 | - | W |  | ХХХХХХХХХ ${ }_{\text {¢ }}$ |
| 00004Dн |  |  |  |  |  | ХХХХХХХХХв |
| 00004Ен | PCNTL2 | PPG control status register | R/W | R/W |  | XX000000в |
| 00004FH | PCNTH2 | ch. 2 | R/W | R/W |  | 00000000в |
| 000050н | TMRR0 | 16-bit timer register ch. 0 | - | R/W | Waveform generator | ХХХХХХХХХв |
| 000051н |  |  |  |  |  | ХХХХХХХХХв |
| 000052н | TMRR1 | 16-bit timer register ch. 1 | - | R/W |  | XXXXXXXXв |
| 000053н |  |  |  |  |  | ХХХХХХХХХв |
| 000054н | TMRR2 | 16-bit timer register ch. 2 | - | R/W |  | XXXXXXXX ${ }_{\text {¢ }}$ |
| 000055н |  |  |  |  |  | XXXXXXXXв |
| 000056н | DTCR0 | 16-bit timer control register ch. 0 | R/W | R/W |  | 00000000в |
| 000057 ${ }_{\text {H }}$ | DTCR1 | 16-bit timer control register ch. 1 | R/W | R/W |  | 00000000в |
| 000058н | DTCR2 | 16-bit timer control register ch. 2 | R/W | R/W |  | 00000000в |
| 000059н | SIGCR | Waveform control register | R/W | R/W |  | 00000000в |
| 00005Ан | $\begin{aligned} & \text { CPCLRB / } \\ & \text { CPCLR } \end{aligned}$ | Compare clear buffer register/ Compare clear register | - | R/W | 16-bit free-run timer | 11111111в |
| 00005Вн |  |  |  |  |  | 11111111в |
| 00005Сн | TCDT | Timer data register | - | R/W |  | 00000000в |
| 00005D |  |  |  |  |  | 00000000в |
| 00005Ен | TCCSL | Timer control status register (lower) | R/W | R/W |  | Х0100000в |
| 00005FH | TCCSH | Timer control status register (upper) | R/W | R/W |  | 00000000в |
| 000060н | IPCP0 | Input capture data register ch. 0 | - | R | 16-bit input capture (ch. 0 to ch.3) | ХХХХХХХХХв |
| 000061н |  |  |  |  |  | ХХХХХХХХХ ${ }_{\text {¢ }}$ |
| 000062н | IPCP1 | Input capture data register ch. 1 | - | R |  | XXXXXXXX |
| 000063н |  |  |  |  |  | ХХХХХХХХХв |
| 000064н | IPCP2 | Input capture data register ch. 2 | - | R |  | ХХХХХХХХХв |
| 000065н |  |  |  |  |  |  |
| 000066н | IPCP3 | Input capture data register ch. 3 | - | R |  |  |
| 000067н |  |  |  |  |  | XXXXXXXX |

(Continued)

## MB90820B Series

| Address | Abbreviation | Register | $\begin{gathered} \text { Byte } \\ \text { access } \end{gathered}$ | Word | Resource name | Initial |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000068н | PICSL01 | Input capture control status register ch.0,ch. 1 (lower) | R/W | R/W |  | 00000000в |
| 000069н | PICSH01 | PPG output control / Input capture control status register ch.0,ch. 1 (upper) | R, R/W | R, R/W | 16-bit input capture | 00000000в |
| 00006Ан | ICSL23 | Input capture control status register ch.2,ch. 3 (lower) | R/W | R/W |  | 00000000в |
| 00006Вн | ICSH23 | Input capture control status register ch.2,ch. 3 (upper) | R | R |  | XXXXXX00в |
| $\begin{gathered} 00006 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00006 \mathrm{E}_{\mathrm{H}} \end{gathered}$ | Prohibited area |  |  |  |  |  |
| 00006Fн | ROMM | ROM mirroring function selection register | W | W | ROM mirroring function | XXXXXXX1в |
| 000070н | $\begin{aligned} & \text { ОССРВО / } \\ & \text { ОССРО } \end{aligned}$ | Output compare buffer register / <br> Output compare register ch. 0 | - | R/W | Output compare (ch. 0 to ch.5) | XXXXXXXX ${ }_{\text {в }}$ |
| 000071н |  |  |  |  |  | XXXXXXXX |
| 000072н | $\begin{aligned} & \text { OCCPB1 / } \\ & \text { OCCP1 } \end{aligned}$ | Output compare buffer register / Output compare register ch. 1 | - | R/W |  | XXXXXXXX |
| 000073н |  |  |  |  |  | XXXXXXXX |
| 000074н | $\begin{aligned} & \text { OCCPB2 / } \\ & \text { OCCP2 } \end{aligned}$ | Output compare buffer register / Output compare register ch. 2 | - | R/W |  | ХХХХХХХХв |
| 000075н |  |  |  |  |  | XXXXXXXX |
| 000076н | $\begin{aligned} & \text { OCCPB3 / } \\ & \text { OCCP3 } \end{aligned}$ | Output compare buffer register / Output compare register ch. 3 | - | R/W |  | XXXXXXXXB |
| 000077н |  |  |  |  |  | XXXXXXXX |
| 000078н | $\begin{aligned} & \text { OCCPB4 / } \\ & \text { OCCP4 } \end{aligned}$ | Output compare buffer register / Output compare register ch. 4 | - | R/W |  | ХХХXXXXX |
| 000079н |  |  |  |  |  | XXXXXXXX |
| 00007Ан | $\begin{aligned} & \text { OCCPB5 / } \\ & \text { OCCP5 } \end{aligned}$ | Output compare buffer register / Output compare register ch. 5 | - | R/W |  | XXXXXXXX |
| 00007Вн |  |  |  |  |  | XXXXXXXX |
| 00007Сн | OCSO | Compare control register ch. 0 | R/W | R/W |  | 00001100в |
| 00007D | OCS1 | Compare control register ch. 1 | R/W | R/W |  | X1100000в |
| 00007Ен | OCS2 | Compare control register ch. 2 | R/W | R/W |  | 00001100в |
| 00007Fн | OCS3 | Compare control register ch. 3 | R/W | R/W |  | X1100000в |
| 000080н | OCS4 | Compare control register ch. 4 | R/W | R/W |  | 00001100в |
| 000081н | OCS5 | Compare control register ch. 5 | R/W | R/W |  | X1100000в |
| 000082н | TMCSRL0 | Timer control status register ch. 0 (lower) | R/W | R/W | 16-bit reload timer (ch.0) | 00000000в |
| 000083н | TMCSRH0 | Timer control status register ch. 0 (upper) | R/W | R/W |  | XXX10000в |
| 000084н | TMRO / TMRDO | 16 bit timer register ch. 0 / 16-bit reload register ch. 0 |  | R/W |  | XXXXXXXX ${ }^{\text {¢ }}$ |
| 000085н |  |  |  |  |  | XXXXXXXX |
| 000086н | TMCSRL1 | Timer control status register ch. 1 (lower) | R/W | R/W | 16-bit reload timer (ch.1) | 00000000в |

(Continued)

## MB90820B Series

| Address | Abbreviation | Register | $\begin{gathered} \text { Byte } \\ \text { access } \end{gathered}$ | Word access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000087H | TMCSRH1 | Timer control status register ch. 1 (upper) | R/W | R/W | 16-bit reload timer (ch.1) | XXX10000в |
| 000088н | TMR1 TMRD1 | 16 bit timer register ch. 1 / 16-bit reload register ch. 1 | - | R/W |  | XXXXXXXX |
| 000089н |  |  |  |  |  | XXXXXXXX |
| 00008Ан | CSVCR | Clock supervisor control register* | R, R/W | - | Clock supervisor | 00011100в |
| 00008Bн | Prohibited area |  |  |  |  |  |
| 00008Cн | RDR0 | Port 0 pull-up resistor setting register | R/W | R/W | Port 0 | 00000000в |
| 00008D ${ }_{\text {н }}$ | RDR1 | Port 1 pull-up resistor setting register | R/W | R/W | Port 1 | 00000000в |
| 00008Ен | RDR2 | Port 2 pull-up resistor setting register | R/W | R/W | Port 2 | 00000000в |
| 00008Fн | RDR3 | Port 3 pull-up resistor setting register | R/W | R/W | Port 3 | 00000000в |
| $\begin{gathered} \hline 000090_{\mathrm{H}} \\ \text { to } \\ 00009 \mathrm{D}_{\mathrm{H}} \end{gathered}$ | Prohibited area |  |  |  |  |  |
| 00009Ен | PACSR | Program address detection control status register | R/W | R/W | Address match detection | XXXX0000в |
| 00009F\% | DIRR | Delayed interrupt cause / clear register | R/W | R/W | Delayed interrupt | XXXXXXX0в |
| 0000AOH | LPMCR | Low-power consumption mode control register | W, R/W | W, R/W | Low-power consumption | 00011000в |
| 0000A1н | CKSCR | Clock selection register | R, R/W | R, R/W | control register | 11111100в |
| $\begin{gathered} \hline 0000 \mathrm{~A} 2 \mathrm{H} \\ \text { to } \\ 0000 \mathrm{~A} 7 \mathrm{H} \end{gathered}$ | Prohibited area |  |  |  |  |  |
| 0000A8н | WDTC | Watchdog timer control register | R, W | R, W | Watchdog timer | XXXXX111в |
| 0000А9н | TBTC | Time-base timer control register | W, R/W | W, R/W | Time-base timer | 1XX00100в |
| $\begin{aligned} & \text { 0000ААн } \\ & \text { to } \\ & 0000 \mathrm{ADн} \end{aligned}$ | Prohibited area |  |  |  |  |  |
| 0000AEн | FMCS | Flash memory control status register | R, R/W | R, R/W | Flash memory interface circuit | 000Х0000в |
| 0000AFH | Prohibited area |  |  |  |  |  |

(Continued)

## MB90820B Series

| Address | Abbreviation | Register | $\begin{array}{\|c\|} \hline \text { Byte } \\ \text { access } \end{array}$ | Word access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000B0н | ICR00 | Interrupt control register 00 | R/W | R/W | Interrupt controller | 00000111B |
| 0000B1н | ICR01 | Interrupt control register 01 | R/W | R/W |  | 00000111в |
| 0000В2н | ICR02 | Interrupt control register 02 | R/W | R/W |  | $0000011{ }^{\text {в }}$ |
| 0000В3н | ICR03 | Interrupt control register 03 | R/W | R/W |  | 00000111в |
| 0000B4н | ICR04 | Interrupt control register 04 | R/W | R/W |  | 00000111в |
| 0000B5 ${ }^{\text {¢ }}$ | ICR05 | Interrupt control register 05 | R/W | R/W |  | 00000111в |
| 0000B6н | ICR06 | Interrupt control register 06 | R/W | R/W | Interrupt controller | 00000111в |
| 0000B7 ${ }^{\text {H }}$ | ICR07 | Interrupt control register 07 | R/W | R/W |  | 00000111в |
| 0000B8н | ICR08 | Interrupt control register 08 | R/W | R/W |  | 00000111в |
| 0000B9н | ICR09 | Interrupt control register 09 | R/W | R/W |  | 00000111в |
| 0000ВАн | ICR10 | Interrupt control register 10 | R/W | R/W |  | 00000111в |
| 0000ВВн | ICR11 | Interrupt control register 11 | R/W | R/W |  | 00000111в |
| 0000BCH | ICR12 | Interrupt control register 12 | R/W | R/W |  | 00000111в |
| 0000BDн | ICR13 | Interrupt control register 13 | R/W | R/W |  | 00000111 B |
| 0000ВЕн | ICR14 | Interrupt control register 14 | R/W | R/W |  | 00000111в |
| 0000BFн | ICR15 | Interrupt control register 15 | R/W | R/W |  | 00000111в |
| 0000C0н | PWCSL0 | PWC control status register ch. 0 | R/W | R/W | PWC timer (ch.0) | 00000000в |
| 0000C1н | PWCSH0 |  | R, R/W | R, R/W |  | 00000000в |
| 0000С2н | PWC0 | PWC data buffer register ch. 0 | - | R/W |  | XXXXXXXXв |
| 0000С3н |  |  |  |  |  | XXXXXXXX |
| 0000С4н | DIV0 | Divide ratio control register ch. 0 | R/W | R/W |  | XXXXXX00в |
| 0000C5 ${ }^{\text {H }}$ | ADER0 | A/D input enable register 0 | R/W | R/W | Port 6, A/D | 11111111в |
| 0000С6н | ADCS0 | A/D control status register 0 | R/W | R/W | 8/10-bit A/D converter | 000XXXX0в |
| 0000С7 ${ }^{\text {H }}$ | ADCS1 | A/D control status register 1 | W, R/W | W, R/W |  | 0000000Хв |
| 0000С8н | ADCR0 | A/D data register 0 | R | R |  | XXXXXXXX |
| 0000С9н | ADCR1 | A/D data register 1 | R | R |  | XXXXXXXX |
| 0000САн | ADSR0 | A/D setting register 0 | R/W | R/W |  | 00000000в |
| 0000CBн | ADSR1 | A/D setting register 1 | R/W | R/W |  | 00000000в |
| 0000ССн | DAT0 | D/A data register 0 | R/W | R/W | 8-bit D/A converter | XXXXXXXX |
| 0000CD ${ }^{\text {¢ }}$ | DAT1 | D/A data register 1 | R/W | R/W |  | XXXXXXXXB |
| 0000СЕн | DACR0 | D/A control register 0 | R/W | R/W |  | XXXXXXX0B |
| 0000CF\% | DACR1 | D/A control register 1 | R/W | R/W |  | ХХХХХХХ0в |
| 0000D0н | ADER1 | A/D input enable register 1 | R/W | R/W | Port 7, A/D | 11111111в |
| $\begin{aligned} & \text { 0000D1н } \\ & \text { to } \\ & 0000 \mathrm{EFH}_{\mathrm{H}} \end{aligned}$ | Prohibited area |  |  |  |  |  |

(Continued)

## MB90820B Series

(Continued)

| Address | Abbreviation | Register | $\begin{gathered} \text { Byte } \\ \text { access } \end{gathered}$ | $\begin{aligned} & \hline \text { Word } \\ & \text { access } \end{aligned}$ | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline 0000 \mathrm{FOH} \\ \text { to } \\ 0000 \mathrm{FF} \boldsymbol{H} \end{gathered}$ | External area |  |  |  |  |  |
| 001FF0н | PADRLO | Program address detection register 0 (lower) | R/W | R/W | Address match detection | XXXXXXXX |
| 001FF1н | PADRM0 | Program address detection register 0 (middle) | R/W | R/W |  | XXXXXXXX |
| 001FF2н | PADRH0 | Program address detection register 0 (higher) | R/W | R/W | Address match detection | XXXXXXXX |
| 001FF3н | PADRL1 | Program address detection register 1 (lower) | R/W | R/W |  | XXXXXXXX |
| 001FF4H | PADRM1 | Program address detection register 1 (middle) | R/W | R/W |  | XXXXXXXX |
| 001FF5 | PADRH1 | Program address detection register 1 (higher) | R/W | R/W |  | XXXXXXXX |

*: For MB90F828B only. Prohibited for the other products.

- Meaning of abbreviations used for reading and writing R/W: Read and write enabled
R : Read-only
W : Write-only
- Explanation of initial values

0 : The bit is initialized to " 0 ".
1 : The bit is initialized to " 1 ".
$X$ : The initial value of the bit is undefined.

## MB90820B Series

## INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

| Interrupt cause | El²OS support | Interrupt vector |  |  | Interrupt control register |  | Priority |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number |  | Address | ICR | Address |  |
| Reset | $\times$ | \#08 | 08H | FFFFDCH | - | - | High |
| INT9 instruction | $\times$ | \#09 | 09н | FFFFD84 | - | - | - |
| Exception processing | $\times$ | \#10 | ОАн | FFFFD4н | - | - |  |
| A/D converter conversion complete | $\bigcirc$ | \#11 | OВн | FFFFFD0н | ICR00 | 0000B0 |  |
| Output compare ch. 0 match | $\bigcirc$ | \#12 | 0Сн | FFFFCCH | ICROO | О000В |  |
| End of measurement by PWC timer ch. 0 / PWC timer ch. 0 overflow | $\bigcirc$ | \#13 | 0Dн | FFFFCC8 | ICR01 | 0000B1н |  |
| 16-bit PPG timer ch. 0 | $\bigcirc$ | \#14 | ОЕн | FFFFC4 ${ }_{\text {¢ }}$ |  |  |  |
| Output compare ch. 1 match | $\bigcirc$ | \#15 | 0FH | FFFFFC0н | ICR02 | 0000В2н |  |
| 16-bit PPG timer ch. 1 | $\bigcirc$ | \#16 | 10H | FFFFBCH | ICR02 | 0000B2н |  |
| Output compare ch. 2 match | $\bigcirc$ | \#17 | 11н | FFFFB8 ${ }_{\text {н }}$ | ICR03 | 000 |  |
| 16-bit reload timer ch. 1 underflow | $\bigcirc$ | \#18 | 12н | FFFFFB4 | ICRO3 | 0000В3н |  |
| Output compare ch. 3 match | $\bigcirc$ | \#19 | 13н | FFFFFB0н |  |  |  |
| DTP/ext. interrupt ch.0/ch. 1 detection | $\bigcirc$ | \#20 | 14 |  | ICR04 | 0000B4H |  |
| DTTI | $\triangle$ | \#20 | 14 H | Fr |  |  |  |
| Output compare ch. 4 match | $\bigcirc$ | \#21 | 15 H | FFFFFA8н | ICR05 | 0000B5 |  |
| DTP/ext. interrupt ch.2/ch. 3 detection | $\bigcirc$ | \#22 | 16н | FFFFFA4 ${ }_{\text {¢ }}$ | ICROS | 0000В |  |
| Output compare ch. 5 match | $\bigcirc$ | \#23 | 17H | FFFFFA0н |  |  |  |
| End of measurement by PWC timer ch. 1 / PWC timer ch. 1 overflow | $\bigcirc$ | \#24 | 18H | FFFF96 ${ }_{\text {H }}$ | ICR06 | 0000B6н |  |
| DTP/ext. interrupt ch. 4 detection | $\bigcirc$ | \#25 | 19н | FFFF98н | ICR07 | 0000B7 |  |
| DTP/ext. interrupt ch. 5 detection | $\bigcirc$ | \#26 | 1Ан | FFFF94н | ICRO7 | 0000В7н |  |
| DTP/ext. interrupt ch. 6 detection | $\bigcirc$ | \#27 | 1Вн | FFFF90н | R08 | 0000B8 |  |
| DTP/ext. interrupt ch. 7 detection | $\bigcirc$ | \#28 | $1 \mathrm{CH}^{\text {}}$ | FFFF8CH | CR08 | 0000B8н |  |
| Waveform generator 16-bit timers ch.0/ ch.1/ch. 2 underflow | $\triangle$ | \#29 | 1Dн | FFFF88 ${ }_{\text {H }}$ | ICR09 | 0000B9н |  |
| 16-bit reload timer ch. 0 underflow | $\bigcirc$ | \#30 | 1Ен | FFFF84н |  |  |  |
| 16-bit free-run timer zero detect | $\triangle$ | \#31 | 1FH | FFFF80н | ICR10 | 0000BA |  |
| 16-bit PPG timer ch. 2 | $\bigcirc$ | \#32 | 20н | FFFF7CH | ICR10 | 0000BA |  |
| Input capture ch.0/ch. 1 | $\bigcirc$ | \#33 | 21н | FFFF78 | ICR11 | 0000ВВн |  |
| 16-bit free-run timer compare clear | $\triangle$ | \#34 | 22н | FFFF74 | ICR11 | о000ВВн |  |
| Input capture ch.2/ch. 3 | $\bigcirc$ | \#35 | 23H | FFFF70н | ICR12 | 0000BC |  |
| Time-base timer | $\triangle$ | \#36 | 24H | FFFF6CH | ICR12 | 0000BCH |  |
| UART ch. 1 receive | ( | \#37 | 25H | FFFF68н | ICR13 | 000 |  |
| UART ch. 1 send | $\triangle$ | \#38 | 26 ${ }^{\text {H}}$ | FFFF64н | ICR13 | 0000BDH |  |
| UART ch. 0 receive | ( | \#39 | 27 ${ }^{\text {H}}$ | FFFF60н | ICR14 | 0000BE |  |
| UART ch. 0 send | $\triangle$ | \#40 | 28H | FFFF5CH | ICR14 | О000ВЕн | , |
| Flash memory status | $\triangle$ | \#41 | 29H | FFFF58н | ICR15 | 0000BF | Low |
| Delayed interrupt generator module | $\triangle$ | \#42 | 2 А | FFFF54 | ICR15 | 0000BFн | Low |

© : Can be used and support the $\mathrm{EI}^{2} \mathrm{OS}$ stop request.
O : Can be used and interrupt request flag is cleared by $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal.
$\times$ : Cannot be used.
$\triangle:$ Usable when an interrupt cause that shares the ICR is not used.

## MB90820B Series

## - ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| Parameter | Symbol | Rating |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage*1 | Vcc | Vss - 0.3 | Vss +6.0 | V |  |
|  | AVcc | Vss - 0.3 | Vss +6.0 | V | $\mathrm{V} \mathrm{cc}=\mathrm{AVcc}$ *2 |
|  | AVR | Vss -0.3 | Vss +6.0 | V | AV ${ }_{\text {cc }} \geq \mathrm{AVR}, \mathrm{AVR} \geq \mathrm{AV}_{\text {ss }}$ |
| Input voltage*1 | $\mathrm{V}_{1}$ | Vss - 0.3 | Vss +6.0 | V | *3 |
| Output voltage*1 | Vo | Vss - 0.3 | Vss +6.0 | V | * 3 |
| Maximum clamp current | Iclamp | -2.0 | + 2.0 | mA | *5 |
| Total maximum clamp current | $\Sigma$ \| Iclamp | | - | 20 | mA | *5 |
| "L" level maximum output current | lob | - | 15 | mA | *4 |
| "L" level average output current | lolav1 | - | 4 | mA | Except for P00 to P07, P82 to P87 |
|  | lolav2 | - | 12 | mA | P00 to P07, P82 to P87 |
| "L" level total maximum output current | Elo | - | 100 | mA |  |
| "L" level total average output current | Elolav | - | 50 | mA |  |
| " H " level maximum output current | Іон | - | -15 | mA | *4 |
| "H" level average output current | lohav | - | -4 | mA |  |
| "H" level total maximum output current | $\Sigma$ Іон | - | -100 | mA |  |
| "H" level total average output current | Elohav | - | -50 | mA |  |
| Power consumption | PD | - | 430 | mW |  |
| Operating temperature | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

*1 : This parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$.
*2 : AV cc must never exceed V cc when the power is turned on.
*3 : $\mathrm{V}_{\mathrm{I}}$ and V o must never exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the $V_{1}$ rating.
*4 : The maximum output current is a peak value for a corresponding pin.
(Continued)

## MB90820B Series

(Continued)
*5 : • Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50, P51, P80 to P87.

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal is an input signal exceeding Vcc voltage. The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V ), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins (LCD drive pins and comparator input pins, etc.) other than the A/D input pins cannot accept $+B$ input.
- Sample recommended circuits:


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## MB90820B Series

## 2. Recommended Operating Conditions

| Parameter | Sym- | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Power supply voltage | Vcc AV cc | - | - | 4.5 | 5.5 | V | At normal operation $T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ |
|  |  | - | - | 4.0 | 5.5 | V | Normal operation when D/A converter is not used $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ |
|  |  | - | - | 3.5 | 5.5 | V | Normal operation when A/D converter and D/A converter are not used $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ |
|  |  | - | - | 3.0 | 5.5 | V | Maintains state in stop mode |
| "H" level input voltage | $\mathrm{V}_{1}$ | P30 to P37, P60 to P67 | $\begin{gathered} \mathrm{Vcc}=5 \mathrm{~V} \\ \pm 10 \% \end{gathered}$ | 0.7 Vcc | $\mathrm{V} \mathrm{cc}+0.3$ | V | CMOS input |
|  | V HS | P00 to P07, P10 to P17, P20 to P27, P40 to P44, P45*1, P46, P47, P50, P51, P70, P71, P72*1, P73 to P77, P80 to P87, RST |  | 0.8 Vcc | V cc +0.3 | V | CMOS hysteresis input |
|  | Vінм | MD0, MD1, MD2 |  | Vcc-0.3 | $\mathrm{V} \mathrm{cc}+0.3$ | V | MD input |
| "L" level input voltage | VIL | P30 to P37, P60 to P67 |  | Vss -0.3 | 0.3 Vcc | V | CMOS input |
|  | Vıs | P00 to P07, P10 to P17, P20 to P27, P40 to P44, P45*1, P46, P47, P50, P51, P70, P71, P72*1, P73 to P77, P80 to P87, RST |  | Vss - 0.3 | 0.2 Vcc | V | CMOS hysteresis input |
|  | VILM | MD0, MD1, MD2 |  | Vss - 0.3 | Vss +0.3 | V | MD input |
| Smoothing capacitor | Cs | - | - | 0.1 | 1.0 | $\mu \mathrm{F}$ | *2 |
| Reference input voltage of $A / D$ converter | AVR | - | - | 2.7 | AVcc | V |  |
| Operating temperature | $\mathrm{T}_{\text {A }}$ | - | - | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |

*1: UART ch.0/ch. 1 data input pins P45/SIN0, P72/SIN1/AN10 can be used as CMOS input by the communication prescaler control register (CDRR).
*2 : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. On the Vcc pin, connect a bypass capacitor that has a larger capacity than that of Cs. Refer to the following figure for connection of smoothing capacitor Cs .
(Continued)

## MB90820B Series

(Continued)

- C pin connection circuit


WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

## MB90820B Series

## 3. DC Characteristics

$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| " H " level output voltage | Vон | All output pins | $\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$ | V cc - 0.5 | - | - | V |  |
| "L" level output voltage | Volı | All pins except P00 to P07 P82 to P87 | $\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loL1}=4.0 \mathrm{~mA} \end{aligned}$ | - | - | 0.4 | V |  |
|  | Vol2 | $\begin{array}{\|l\|} \hline \text { P00 to P07 } \\ \text { P82 to P87 } \end{array}$ | $\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{lot2}=12.0 \mathrm{~mA} \end{aligned}$ | - | - | 0.4 | V |  |
| Input leakage current | IL | All input pins | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{k}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$ | -5 | - | + 5 | $\mu \mathrm{A}$ | At pull-up disabled |
| Pull-up resistance | Rup | $\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \frac{\text { P30 to P37, }}{\text { RST }} \end{aligned}$ | - | 25 | 50 | 100 | $\mathrm{k} \Omega$ | MASK ROM product |
| Pull-down resistance | Roown | MD2 | - | 25 | 50 | 100 | k $\Omega$ | MASK ROM product |

(Continued)

## MB90820B Series

(Continued)
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

*: The power supply current is regulated with an external clock.

## MB90820B Series

## 4. AC Characteristics

(1) Clock Timings
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{AV}=\mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Clock frequency | Fc | X0, X1 | 3 | - | 16 | MHz | When using oscillation circuit |
|  |  |  | 3 | - | 24 |  | When using external clock |
|  |  |  | 4 | - | 24 |  | 1 multiplied PLL |
|  |  |  | 4 | - | 12 |  | 2 multiplied PLL |
|  |  |  | 4 | - | 8 |  | 3 multiplied PLL |
|  |  |  | 4 | - | 6 |  | 4 multiplied PLL |
|  |  |  | 4 | - | 4 |  | 6 multiplied PLL |
| Clock cycle time | thcyl | X0, X1 | 62.5 | - | 333 | ns | When using oscillation circuit |
|  |  |  | 41.67 | - | 333 | ns | When using external clock |
| Input clock pulse width | $\begin{aligned} & \text { Pwh, } \\ & \text { PwL } \end{aligned}$ | X0 | 10 | - | - | ns | When using external clock, duty ratio is about $30 \%$ to $70 \%$. |
| Input clock rise/fall time | $\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$ | X0 | - | - | 5 | ns | When using external clock |
| Internal operating clock frequency | fcp | - | 1.5 | - | 24 | MHz |  |
| Internal operating clock cycle time | tcp | - | 41.67 | - | 666 | ns |  |



## MB90820B Series

Relationship between internal operating clock frequency and power supply voltage


Relationship between clock frequency and internal operating clock frequency


The AC ratings are measured for the following measurement reference voltages

- Input signal waveform

Hysteresis input pin


- Output signal waveform

Output pin


Pins other than hysteresis input/MD input


## MB90820B Series

(2) External Reset
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Reset input time | trsti | $\overline{\text { RST }}$ | 500 | - | ns | In normal operation |
|  |  |  | Oscillation time of oscillator* +100 | - | $\mu \mathrm{s}$ | In stop mode |
|  |  |  | 100 | - | $\mu \mathrm{s}$ | In time-base timer mode |

*: Oscillation time of oscillator is the time to reach to $90 \%$ of the oscillation amplitude from stand still. In the crystal oscillator, the oscillation time is between several ms to tens of ms . In ceramic oscillator, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ms .

- In normal operation mode

- In stop mode, at power on



## MB90820B Series

(3) Power-on Reset
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Power supply rising time | $t_{R}$ | Vcc | - | 0.05 | 30 | ms |  |
| Power supply cut-off time | toff | Vcc |  | 1 | - | ms | Waiting time for power supply on |



Note : Sudden changes in the power supply voltage may cause a power-on reset.
To change the power supply voltage while the device is in operation, be sure to set the slope of rising within $50 \mathrm{mV} / \mathrm{ms}$ or less as shown below.


## MB90820B Series

(4) UART
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| Serial clock cycle time | tscrc | SCK0 to SCK1 | $C\llcorner=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of internal shift clock mode | 8 tcp | - | ns |
| SCK $\downarrow \rightarrow$ SOT delay time | tsıov | $\begin{aligned} & \hline \text { SCK0 to SCK1 } \\ & \text { SOT0 to SOT1 } \end{aligned}$ |  | -80 | + 80 | ns |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivsh | SCK0 to SCK1 SIN0 to SIN1 |  | 100 | - | ns |
| SCK $\uparrow \rightarrow$ valid SIN hold time | tsHIX | SCK0 to SCK1 <br> SIN0 to SIN1 |  | 60 | - | ns |
| Serial clock "H" pulse width | tshsL | SCK0 to SCK1 | $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of external shift clock mode | 4 tcp | - | ns |
| Serial clock "L" pulse width | tsısh | SCK0 to SCK1 |  | 4 tcp | - | ns |
| SCK $\downarrow \rightarrow$ SOT delay time | tslov | $\begin{aligned} & \text { SCK0 to SCK1 } \\ & \text { SOT0 to SOT1 } \end{aligned}$ |  | - | 150 | ns |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivsh | $\begin{aligned} & \text { SCK0 to SCK1 } \\ & \text { SIN0 to SIN1 } \end{aligned}$ |  | 60 | - | ns |
| SCK $\uparrow \rightarrow$ valid SIN hold time | tshlx | SCK0 to SCK1 SIN0 to SIN1 |  | 60 | - | ns |

Notes : - These are AC ratings in the CLK synchronous mode.

- CL is the load capacitance value connected to pins while testing.
- tcp is machine cycle time (unit : ns).


## MB90820B Series

- Internal shift clock mode

- External shift clock mode



## MB90820B Series

## (5) Resources Input Timing

$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| Input pulse width | ttwh ttww | IN0 to IN3, TINO to TIN1, PWIO to PWI1, DTTI | - | 4 tcp | - | ns |

INO to IN3, TINO to TIN1, PWIO to PWI1, DTTI

(6) Trigger Input Timing

| Parameter | Symbol | Pin name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| Input pulse width | ttrgh ttrgl | INT0 to INT7 | - | 5 tcp | - | ns |

INT0 to INT7


## MB90820B Series

## 5. A/D Converter Electrical Characteristics

$\left(3.0 \mathrm{~V} \leq \mathrm{AVR}-\mathrm{AV} \mathrm{Ss}, \mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$


* : The current when the A/D converter is not operating or the CPU is in stop mode (for $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV}$ cc $=A V R=5.0 \mathrm{~V}$ ) Note : The error increases proportionally as |AVR - AVss| decreases.


## MB90820B Series

## 6. A/D Converter Glossary

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity error : Deviation between a line across zero-transition line ("00 00000000 " $\leftrightarrow$ "00 00000001 ") and full-scale transition line ("1111111110" $\leftrightarrow$ "1111111111") and actual conversion characteristics.
Differential linearity error : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value
Total error : Difference between an actual value and an ideal value. A total error includes zero transition error, full-scale transition error, and linear error.


Total error for digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}} \quad[\mathrm{LSB}]$

$$
1 \mathrm{LSB}=(\text { Ideal value }) \frac{\mathrm{AVR}-\mathrm{AVss}}{1024}[\mathrm{~V}]
$$

N : A/D converter digital output value
Vot(Ideal value) $=\mathrm{AVss}+0.5 \mathrm{LSB}$ [V]
$\mathrm{V}_{\text {FST }}$ (Ideal value) $=\mathrm{AVR}-1.5 \mathrm{LSB}$ [V]
$\mathrm{V}_{\mathrm{Nt}}$ : Voltage at which of digital output transitions from $(\mathrm{N}-1)$ н to $\mathrm{N}_{\mathrm{H}}$.
(Continued)

## MB90820B Series

(Continued)


## MB90820B Series

## 7. Notes on Using A/D Converter

- About the external impedance of the analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. And if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input circuit model


|  | R | C |
| :--- | :---: | :---: |
| MB90822B/823B | $2.0 \mathrm{k} \Omega$ (Max) | 14.4 pF (Max) |
| MB90F822B/F823B | $2.0 \mathrm{k} \Omega$ (Max) | 16.0 pF (Max) |

Note : The values are reference values.

- The relationship between the external impedance and minimum sampling time

- About the error

The accuracy gets worse as $\mid \mathrm{AVR}-\mathrm{AV}$ ss $\mid$ becomes smaller.

## MB90820B Series

## 8. Electrical Characteristics of D/A convertor

$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Resolution | - | - | - | - | 8 | - | bit |  |
| Differential linearity error | - | - |  | - | - | $\pm 0.5$ | LSB |  |
| Conversion time | - | - |  | - | 0.45 | - | $\mu \mathrm{s}$ | * |
| Analog output impedance | - | - |  | - | 2.9 | 3.8 | k $\Omega$ |  |
| Power supply current | Iove | AVcc |  | - | 160 | 920 | $\mu \mathrm{A}$ |  |
|  | loves |  |  | - | 0.1 | - | $\mu \mathrm{A}$ | D/A stops |

* : With load capacitance 20 pF.


## MB90820B Series

## 9. Flash Memory Program/Erase Characteristics

| Parameter | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Sector erase time | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \end{aligned}$ | - | 1 | 15 | s | Excludes programming prior to erasure |
| Chip erase time |  | - | 9 | - | s | Excludes programming prior to erasure |
| Word (16 bit width) programing time |  | - | 16 | 3,600 | $\mu \mathrm{S}$ | Except for the overhead time of the system |
| Program/Erase cycle | - | 10,000 | - | - | cycle |  |
| Flash data retention time | $\begin{gathered} \text { Average } \\ \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{gathered}$ | 20 | - | - | year | * |

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$ ).

## ORDERING INFORMATION

| Part number | Package |
| :--- | :---: |
| MB90F823BPMC |  |
| MB90F822BPMC | 80-pin plastic LQFP <br> (FPT-80P-M21) |
| MB90822BPMC |  |
| MB90823BPMC |  |
| MB90F828BPMC | 80-pin plastic LQFP |
| MB90F823BPMC1 | (FPT-80P-M22) |
| MB90F822BPMC1 |  |
| MB90822BPMC1 |  |
| MB90823BPMC1 |  |
| MB90F828BPMC1 | 80-pin plastic QFP |
| MB90F823BPF | (FPT-80P-M06) |
| MB90F822BPF |  |
| MB90822BPF |  |
| MB90823BPF |  |
| MB90F828BPF |  |

## MB90820B Series

## PACKAGE DIMENSIONS



80-pin plastic LQFP
(FPT-80P-M21)


Dimensions in mm (inches).
Note: The values in parentheses are reference values

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/
(Continued)

## MB90820B Series



Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

## MB90820B Series

(Continued)

| 80-pin plastic QFP | Lead pitch | 0.80 mm |
| :---: | :---: | :---: |
|  | Package width $\times$ package length | $14.00 \times 20.00 \mathrm{~mm}$ |
|  | Lead shape | Gullwing |
|  | Sealing method | Plastic mold |
|  | Mounting height | 3.35 mm MAX |
|  | Code (Reference) | P-QFP80-14×20-0.80 |
| (FPT-80P-M06) |  |  |



Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/

## MB90820B Series

## MAIN CHANGES IN THIS EDITION

| Page | Section | Change Results |
| :---: | :--- | :--- |
| 4 | ■ PACKAGE AND <br> CORRESPONDING PRODUCTS | Changed the MB90822B (FPT-80P-M21). <br> X : Not available $\rightarrow$ : Available |
| 43 | ■ ELECTRICAL CHARACTERISTICS <br> 5. A/D Converter Electrical <br> Characteristics | Changed the unit of zero transition voltage and full-scale tran- <br> sition voltage. <br> mV $\rightarrow$ V |
| 48 | ■ ORDERING INFORMATION | Added the part number. <br> MB90822BPMC <br> MB90823BPMC |

The vertical lines marked in the left side of the page show the changes.

## MB90820B Series

MEMO

## MB90820B Series



## MB90820B Series

MEMO

# FUJITSU MICROELECTRONICS LIMITED 

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387<br>http://jp.fujitsu.com/fml/en/

For further information please contact:

## North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

## Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen,
Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

## Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

Asia Pacific<br>FUJITSU MICROELECTRONICS ASIA PTE LTD.<br>151 Lorong Chuan, \#05-08 New Tech Park,<br>Singapore 556741<br>Tel: +65-6281-0770 Fax: +65-6281-0220<br>http://www.fujitsu.com/sg/services/micro/semiconductor/<br>FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No. 222 Yan An Road(E), Shanghai 200002, China<br>Tel: +86-21-6335-1560 Fax: +86-21-6335-1605<br>http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.<br>10/F., World Commerce Centre, 11 Canton Road<br>Tsimshatsui, Kowloon<br>Hong Kong<br>Tel: +852-2377-0226 Fax: +852-2376-3269<br>http://cn.fujitsu.com/fmc/tw

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-
ing the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual
property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising
in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current
levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business \& Media Promotion Dept.


[^0]:    *: The writer address is the address corresponding to the CPU address when writing data from a parallel flash memory writer. Use the writer address when programming or erasing using a general-purpose parallel writer.

